RUN8 HJET Results

RSC meeting 2008/09/12 Hiromi Okada

Contents

- 1. Data Quality Assurance
 - Energy calibration using α =5.486 MeV source. Stable ~100keV.
 - Time0 for every channel is stable. Duration is less than TDC bite.
 - See backup info. For more details.
- 2. Event selection : page 3~
 - Kinetics of the pp elastic scattering
 - How to pick elastic events → "channel selection method"
 - Background estimation
- 3. Raw asymmetry and ratio: page 13~
- 4. Systematic uncertainty and Results: page 15~
 - Background contribution
- 5. Backup information: page 19~

I'd apologize the quality of the phone from Japan via SKYPE. I can't hear your voice without pushing a mute bottom.

Kinetic of the pp elastic scattering

 $ch\# \propto \theta_R$

 θ_R big $\Rightarrow T_R$ big \Rightarrow small TOF

 $0.5 < T_R < 5 \text{ MeV}$ 80 > TOF > 20 ns

How to pick elastic events "channel selection method"

- ✓ Event distribution as function of channel# for $1 < T_R < 1.5$ MeV.
- ✓ Distinguishable between "Signal" channels and "non-signal" channels
- ✓ 2~3 channels are selected for each T_R bin and each detector.

Confirmation of "signal-channels" &

Background level estimation

Assuming BG has flat distribution, I estimated <BG> from "backside" detector.

$$<$$
BG $>/($ S $+<$ BG $>) = 7 ± 1%$

Higher than previous RUNs!

BG level comparison using "target-profile data"

RUN4 $0.6 \le T_R \le 4.7 \text{ MeV}$

Measured α 3%

• M=3.2% (\rightarrow Consistent with H₂~3%)

RUN8 $1.0 \le T_R \le 4.0 \text{ MeV}$

X/Y = 7 %, no $\alpha!$

Factor 2 UP

From where BG events come?

BG level of "two beams mode" is not double of "single beam mode"!

 $BG/(SIG+BG) \sim 8\%$

BG level is estimated from

"non-signal" strips

 $BG/(SIG+BG) \sim 7\%$

✓ Abort gap data also implies 9 background came from two beams!

BG is polarized?

Try 2 types of "BG asymmetry"

- Non-signal channels of "signal side" detectors.
 - Just avoid "signal channels" (A) ε_T^{BG} , ε_B^{BG}
 - Avoid "signal channels and nearest channels"
 (B) ε_T^{BG}, ε_B^{BG}
- Channels of "backside" detectors to check beam asymmetry (C) ε_{BLUE}^{BG} , $\varepsilon_{YELLOW}^{BG}$

BG is polarized?

BG asymmetry

		$\epsilon_{ ext{TARGET}}$	$\epsilon_{ m BEAM}$	Stat. error
(A) Non-signal channels	Blue mode	0.0102	0.0055	0.0011
	Yellow mode	0.0115	0.0052	0.0015
(B) Non-signal strips,	Blue mode	-0.0015	0.0018	0.0015
non- neighbor channels	Yellow mode	0.0064	0.0019	0.0021

They may include "elastic" events

Consistent with zero!

		$\varepsilon_{\mathrm{BEAM}}$ with BLUE pat.	ε _{BEAM} with YELLOW pat.	Stat. err
(C) Backside channels	Blue mode	0.0021	-0.0001	0.0010
	Yellow mode	0.0017	0.0025	0.0011

Background is unpolarized with beam spin patterns,

Raw asymmetry

I combined 6 T_R bins (1 < T_R < 4 MeV) statistically to check fill-by-fill stability of ε_R and ε_T . \rightarrow See backup page 22.

Ratio of raw asymmetries

All data from HJET RUN8

- Asymmetry ratio = $\varepsilon_{\text{beam}}/\varepsilon_{\text{target}}$ does not have -t dependence.
- This is consistent with previous RUNs.

Systematic uncertainty

1. BG contribution

- Event distribution of "backside" detector and "non-signal channels" looks flat (= no angle dependence).
- We **assume** that background distribution under signals are also flat and the same level.
- Background under the signals contains:
 - Scattering between "Target tail" and "RHIC beams"
 - Beam scraping. This is estimated less than 1% from empty-target data analysis.

2. Other source?

Beam polarization

$$P_{beam} = \frac{\varepsilon_{B}^{mes.}}{\varepsilon_{T}^{mes.}} \cdot P_{t \text{ arg et}} \times \left(1 + BG \frac{\varepsilon_{B}^{BG}}{\varepsilon_{B}} - BG \frac{\varepsilon_{T}^{BG}}{\varepsilon_{T}}\right) \frac{Eq.1:}{see \ backup}$$

 $P_{Yellow} = 0.393 \times 0.924 \times 0.997 = 0.362$

 $P_{Blue} = 0.488 \times 0.924 \times 1.009 = 0.455$ (data set-B)

16

Uncertainty and Results

$$\frac{\Delta P_{beam}}{P_{beam}} \bigg|_{stat} = \frac{\Delta \left(\epsilon_{beam}/\epsilon_{target}\right)}{\epsilon_{beam}/\epsilon_{target}} = \frac{\textbf{0.012/0.393=3.1\% YELLOW}}{\textbf{=0.012/0.488=2.5\% BLUE (data set-B)}}$$

$$\frac{\Delta P_{beam}}{P_{beam}}\bigg|_{BG} \cong BG \times \left\{ \frac{\Delta \epsilon_{beam}^{BG}}{\epsilon_{beam}} \oplus \frac{\Delta \epsilon_{target}^{BG}}{\epsilon_{target}} \right\} = 1.1\% \text{ YELLOW}$$

$$= 0.6\% \text{ BLUE}$$

$$Eq.2, see backup$$

$$\frac{\Delta P_{\text{beam}}}{P_{\text{beam}}}\Big|_{P_{\text{target}}} = 2\%$$
 H_2 contamination

RUN8 Polarization (data set-B)

stat. sys. target

$$P_{Yellow} = 0.362$$
, $\Delta P_{Yellow} / P_{Yellow} = \pm 3.1\% \pm 1.1 \% \pm 2\%$

$$P_{Blue} = 0.455, \ \Delta P_{Blue} / P_{Blue} = \pm 2.5\% \pm 0.6 \% \pm 2\%$$

Comparison between years

Asymmetries are in reasonable consistency.

- Asymmetry ratio $=\varepsilon_{beam}/\varepsilon_{target}$ does not have T_R dependence for every year.
- Background polarization is consistent with zero for every year.
- Asymmetry ratio $=\varepsilon_{beam}/\varepsilon_{target}$ is robust for every year.

Backups

Eq.1:

$$P_{beam} = \frac{\varepsilon_{B}^{mes.} \left\{ 1 + BG \cdot \left(1 + \varepsilon_{B}^{BG} / \varepsilon_{B}^{mes.} \right) \right\}}{\varepsilon_{T}^{mes.} \left\{ 1 + BG \cdot \left(1 + \varepsilon_{T}^{BG} / \varepsilon_{T}^{mes.} \right) \right\}} \cdot P_{target}$$

$$\approx \frac{\varepsilon_{B}^{\text{mes.}}}{\varepsilon_{T}^{\text{mes.}}} \cdot P_{\text{target}} \left\{ 1 + BG \cdot \left(1 + \frac{\varepsilon_{B}^{BG}}{\varepsilon_{B}^{\text{mes.}}} \right) \right\} \left\{ 1 - BG \cdot \left(1 + \frac{\varepsilon_{T}^{BG}}{\varepsilon_{T}^{\text{mes.}}} \right) \right\}$$

$$\approx \frac{\varepsilon_{B}^{\text{mes.}}}{\varepsilon_{T}^{\text{mes.}}} \cdot P_{\text{target}} \times \left(1 + BG \frac{\varepsilon_{B}^{\text{BG}}}{\varepsilon_{B}^{\text{mes.}}} - BG \frac{\varepsilon_{T}^{\text{BG}}}{\varepsilon_{T}^{\text{mes.}}}\right)$$

Correction factor *C*

$$BG = 0.07$$

$$\varepsilon_{beam}^{BG} = 0.0018$$

$$\varepsilon_{\text{target}}^{\text{BG}} = -0.0015$$

$$\epsilon_{beam}=0.01931$$

$$\varepsilon_{target} = 0.03955$$

$$C = 1.009$$

$$\varepsilon_{\text{beam}}^{\text{BG}} = 0.0019$$

$$\varepsilon_{\text{target}}^{\text{BG}} = 0.0064$$

$$\varepsilon_{\text{beam}} = 0.0151$$

$$\varepsilon_{\text{target}} = 0.0384$$

$$C=0.997$$

Eq.2:

$$\left. \frac{\Delta \, P_{\text{beam}}}{P_{\text{beam}}} \right|_{BG} \ = \ BG \ \times \left\{ \frac{\Delta \, \epsilon_{\text{beam}}^{\, BG}}{\epsilon_{\text{beam}}} \oplus \ \frac{\Delta \, \epsilon_{\text{t arg et}}^{\, BG}}{\epsilon_{\text{t arg et}}} \right\}$$

$$BG = 0.07$$

$$\Delta \varepsilon_{\text{beam}}^{\text{BG}} = \Delta_{\text{\epsilon target}}^{\text{BG}} = 0.0021$$

$$\varepsilon_{\text{beam}} = 0.0151$$

$$\varepsilon_{\text{target}} = 0.0384$$

$$\Delta \varepsilon_{beam}^{BG} = \Delta_{\varepsilon target}^{BG} = 0.0015$$

$$\varepsilon_{beam}^{BG} = 0.01931$$

$$\varepsilon_{target}^{BG} = 0.03955$$

$$\begin{array}{c|c} \Delta P_{beam} & =1.1\% \ YELLOW \\ \hline P_{beam} & =0.6\% \ BLUE \end{array}$$

Fill-by-fill raw asymmetries (All data from HJET RUN8)

✓ $\varepsilon_{\rm B}/\varepsilon_{\rm B}=1.283$ → Due to different background level between B & Y + different B & Y beam polarizations.

22

✓ Unpolarized backgrounds are just cancel if we take $\varepsilon_B/\varepsilon_T!!$

Just normal bananas and event distribution!

Am source spectrum

Time0 estimation, stability as a function of run#.

Detect Arrival time

time0 = TDC
$$\times$$
 2.369 – tof (T_R)

$$tof(T_R) = L\sqrt{\frac{2T_R}{M_R}}$$

- Try blue and yellow data
- Peak value (fit, peak point)
- Sigma (assume Gaussian)
- How stable they ate?

Time0 distribution of Si#1

Time0 of each channel is stable during RUN8!

- RUN4 σ ~3.9nsec (from my thesis)!
- Difference of time0 between "ONLIE" and "OFFLINE" is within 1 nsec.

I can ±8 nsec TOF width cut for offline analysis.²⁶

1. Unpol. Contamination from Tom and Willy's e-mail (2005 Nov.)

```
> So we all agree to use:
> P_Target = 0.924 + -0.018
 > 3% contamination; we might want to add one more digit to this figure
 *********
> the ref for target pol is Wise et al, page 757 SPIN 2004. The numbers
> given there (P+=0.923 \text{ and } P-=0.925 \text{ or Pave} = 0.924 \text{ are arrived at as})
> follows:
> H-ATOM polarization (P+ = 0.957, P- = 0.959, Pave = 0.958
> The unpol contamination is (3.5 + /- 2.0)\%
> the net target pol is calculated as a mean: 0.965 \times 0.958 + 0.035 \times 0.965 \times 0.958 + 0.035 \times 0.965 
> zero= 0.924. The (relative) error is 2\% = 0.018.
>
```